Human Gene RPS27 (uc001fdv.1)
  Description: ribosomal protein S27
RefSeq Summary (NM_001030): Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of four RNA species and approximately 80 structurally distinct proteins. This gene encodes a member of the S27e family of ribosomal proteins and component of the 40S subunit. The encoded protein contains a C4-type zinc finger domain that can bind to zinc and may bind to nucleic acid. Mutations in this gene have been identified in numerous melanoma patients and in at least one patient with Diamond-Blackfan anemia (DBA). Elevated expression of this gene has been observed in various human cancers. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome. [provided by RefSeq, Jul 2018].
Transcript (Including UTRs)
   Position: hg18 chr1:152,229,853-152,231,249 Size: 1,397 Total Exon Count: 4 Strand: +
Coding Region
   Position: hg18 chr1:152,229,897-152,231,193 Size: 1,297 Coding Exon Count: 4 

Page IndexSequence and LinksUniProtKB CommentsPrimersCTDMicroarray Expression
RNA StructureProtein StructureOther SpeciesGO AnnotationsmRNA DescriptionsPathways
Other NamesGeneReviewsModel InformationMethods
Data last updated at UCSC: 2009-03-03

-  Sequence and Links to Tools and Databases
 
Genomic Sequence (chr1:152,229,853-152,231,249)mRNA (may differ from genome)Protein (84 aa)
Gene SorterGenome BrowserOther Species FASTAVisiGeneGene interactionsTable Schema
AlphaFoldBioGPSEnsemblEntrez GeneExonPrimerGeneCards
GeneNetworkH-INVHGNCHPRDMGIOMIM
PubMedReactomeTreefamUniProtKBBioGrid CRISPR DB

-  Comments and Description Text from UniProtKB
  ID: RS27_HUMAN
DESCRIPTION: RecName: Full=40S ribosomal protein S27; AltName: Full=Metallopan-stimulin 1; Short=MPS-1;
COFACTOR: Binds 1 zinc ion per subunit (Potential).
INTERACTION: Q00987:MDM2; NbExp=5; IntAct=EBI-356336, EBI-389668;
TISSUE SPECIFICITY: Expressed in a wide variety of actively proliferating cells and tumor tissues.
SIMILARITY: Belongs to the ribosomal protein S27e family.
CAUTION: Was originally (PubMed:8407955) thought to be a protein that could have played a role as a potentially important mediator of cellular proliferative responses to various growth factors and other environmental signals. Capable of specific binding to a cAMP response element in DNA.

-  Primer design for this transcript
 

Primer3Plus can design qPCR Primers that straddle exon-exon-junctions, which amplify only cDNA, not genomic DNA.
Click here to load the transcript sequence and exon structure into Primer3Plus

Exonprimer can design one pair of Sanger sequencing primers around every exon, located in non-genic sequence.
Click here to open Exonprimer with this transcript

To design primers for a non-coding sequence, zoom to a region of interest and select from the drop-down menu: View > In External Tools > Primer3


-  Comparative Toxicogenomics Database (CTD)
  The following chemicals interact with this gene           more ... click here to view the complete list

-  Microarray Expression Data
 
Expression ratio colors:

GNF Expression Atlas 2 Data from U133A and GNF1H Chips

      
      
      
     
    
     
Ratios
      
      
      
     
    
     
Absolute
      
       
      
      
     
    
Ratios
      
       
      
      
     
    
Absolute
   
     
     
Ratios
   
     
     
Absolute

Affymetrix All Exon Microarrays

           
Ratios

-  mRNA Secondary Structure of 3' and 5' UTRs
 
RegionFold EnergyBasesEnergy/Base
Display As
5' UTR -8.6344-0.196 Picture PostScript Text
3' UTR -11.3056-0.202 Picture PostScript Text

The RNAfold program from the Vienna RNA Package is used to perform the secondary structure predictions and folding calculations. The estimated folding energy is in kcal/mol. The more negative the energy, the more secondary structure the RNA is likely to have.

-  Protein Domain and Structure Information
  InterPro Domains: Graphical view of domain structure
IPR000592 - Ribosomal_S27e
IPR023407 - Ribosomal_S27e_Zn-bd_dom
IPR011332 - Ribosomal_zn-bd_dom

Pfam Domains:
PF01667 - Ribosomal protein S27

SCOP Domains:
57829 - Zn-binding ribosomal proteins

ModBase Predicted Comparative 3D Structure on P42677
FrontTopSide
The pictures above may be empty if there is no ModBase structure for the protein. The ModBase structure frequently covers just a fragment of the protein. You may be asked to log onto ModBase the first time you click on the pictures. It is simplest after logging in to just click on the picture again to get to the specific info on that model.

-  Orthologous Genes in Other Species
  Orthologies between human, mouse, and rat are computed by taking the best BLASTP hit, and filtering out non-syntenic hits. For more distant species reciprocal-best BLASTP hits are used. Note that the absence of an ortholog in the table below may reflect incomplete annotations in the other species rather than a true absence of the orthologous gene.
MouseRatZebrafishD. melanogasterC. elegansS. cerevisiae
No orthologNo orthologGenome BrowserGenome BrowserGenome BrowserNo ortholog
Gene DetailsGene Details Gene DetailsGene Details 
Gene SorterGene Sorter Gene SorterGene Sorter 
 RGDEnsemblFlyBaseWormBase 
  Protein SequenceProtein SequenceProtein Sequence 
  AlignmentAlignmentAlignment 

-  Gene Ontology (GO) Annotations with Structured Vocabulary
  Molecular Function:
GO:0003677 DNA binding
GO:0003723 RNA binding
GO:0003735 structural constituent of ribosome
GO:0005515 protein binding
GO:0008270 zinc ion binding
GO:0046872 metal ion binding

Biological Process:
GO:0000028 ribosomal small subunit assembly
GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay
GO:0006364 rRNA processing
GO:0006412 translation
GO:0006413 translational initiation
GO:0006614 SRP-dependent cotranslational protein targeting to membrane
GO:0008283 cell proliferation

Cellular Component:
GO:0005622 intracellular
GO:0005634 nucleus
GO:0005654 nucleoplasm
GO:0005829 cytosol
GO:0005840 ribosome
GO:0022627 cytosolic small ribosomal subunit


-  Descriptions from all associated GenBank mRNAs
  AK312070 - Homo sapiens cDNA, FLJ92351, Homo sapiens ribosomal protein S27 (metallopanstimulin 1) (RPS27),mRNA.
BC070219 - Homo sapiens ribosomal protein S27, mRNA (cDNA clone MGC:88200 IMAGE:6744779), complete cds.
D28454 - Homo sapiens mRNA for ribosomal protein S27, 5'UTR region.
L19739 - Homo sapiens metallopanstimulin (MPS1) mRNA, complete cds.
BC002658 - Homo sapiens ribosomal protein S27, mRNA (cDNA clone MGC:3659 IMAGE:3607957), complete cds.
U57847 - Human ribosomal protein S27 mRNA, complete cds.
AB463383 - Synthetic construct DNA, clone: pF1KB6719, Homo sapiens RS27 gene for 40S ribosomal protein S27, without stop codon, in Flexi system.
JD471175 - Sequence 452199 from Patent EP1572962.
KJ892068 - Synthetic construct Homo sapiens clone ccsbBroadEn_01462 RPS27 gene, encodes complete protein.
JD041037 - Sequence 22061 from Patent EP1572962.
JD041038 - Sequence 22062 from Patent EP1572962.

-  Biochemical and Signaling Pathways
  KEGG - Kyoto Encyclopedia of Genes and Genomes
hsa03010 - Ribosome

Reactome (by CSHL, EBI, and GO)

Protein P42677 (Reactome details) participates in the following event(s):

R-HSA-141409 Mad1 binds kinetochore
R-HSA-375302 Kinetochore capture of astral microtubules
R-HSA-5666129 CDC42:GTP recruits DIAPH2-2 to kinetochores
R-HSA-5666169 Kinetochore capture of astral microtubules is positively regulated by CDC42:GTP:p-S196-DIAPH2-2
R-HSA-141431 MAD2 associates with the Mad1 kinetochore complex
R-HSA-141439 Release of activated MAD2 from kinetochores
R-HSA-2467811 Separation of sister chromatids
R-HSA-2467809 ESPL1 (Separase) cleaves centromeric cohesin
R-HSA-5666160 AURKB phosphorylates DIAPH2-2 at kinetochores
R-HSA-72676 eIF3 and eIF1A bind to the 40S subunit
R-HSA-72673 Release of 40S and 60S subunits from the 80S ribosome
R-HSA-141422 MAD2 converted to an inhibitory state via interaction with Mad1
R-HSA-1638821 PP2A-B56 dephosphorylates centromeric cohesin
R-HSA-1638803 Phosphorylation of cohesin by PLK1 at centromeres
R-HSA-2468287 CDK1 phosphorylates CDCA5 (Sororin) at centromeres
R-HSA-72672 The 60S subunit joins the translation initiation complex
R-HSA-72619 eIF2:GTP is hydrolyzed, eIFs are released
R-HSA-72691 Formation of the 43S pre-initiation complex
R-HSA-156808 Formation of translation initiation complexes yielding circularized Ceruloplasmin mRNA in a 'closed-loop' conformation
R-HSA-157849 Formation of translation initiation complexes containing mRNA that does not circularize
R-HSA-72671 eIF5B:GTP is hydrolyzed and released
R-HSA-156907 Aminoacyl-tRNA binds to the ribosome at the A-site
R-HSA-2408529 Sec-tRNA(Sec):EEFSEC:GTP binds to 80S Ribosome
R-HSA-141691 GTP bound eRF3:eRF1 complex binds the peptidyl tRNA:mRNA:80S Ribosome complex
R-HSA-156915 Translocation of ribosome by 3 bases in the 3' direction
R-HSA-141671 Polypeptide release from the eRF3-GDP:eRF1:mRNA:80S Ribosome complex
R-HSA-156912 Peptide transfer from P-site tRNA to the A-site tRNA
R-HSA-927832 UPF1 binds an mRNP with a termination codon preceding an Exon Junction Complex
R-HSA-927789 Formation of UPF1:eRF3 complex on mRNA with a premature termination codon and no Exon Junction Complex
R-HSA-1799332 Nascent polypeptide:mRNA:ribosome complex binds signal recognition particle (SRP)
R-HSA-156923 Hydrolysis of eEF1A:GTP
R-HSA-72621 Ribosomal scanning
R-HSA-72697 Start codon recognition
R-HSA-156823 Association of phospho-L13a with GAIT element of Ceruloplasmin mRNA
R-HSA-5333615 80S:Met-tRNAi:mRNA:SECISBP2:Sec-tRNA(Sec):EEFSEC:GTP is hydrolysed to 80S:Met-tRNAi:mRNA:SECISBP2:Sec and EEFSEC:GDP by EEFSEC
R-HSA-141673 GTP Hydrolysis by eRF3 bound to the eRF1:mRNA:polypeptide:80S Ribosome complex
R-HSA-927889 SMG1 phosphorylates UPF1 (enhanced by Exon Junction Complex)
R-HSA-1799329 Signal peptidase hydrolyzes signal peptide from ribosome-associated nascent protein
R-HSA-1799330 The SRP receptor binds the SRP:nascent peptide:ribosome complex
R-HSA-1799326 Signal-containing nascent peptide translocates to endoplasmic reticulum
R-HSA-141444 Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal
R-HSA-68877 Mitotic Prometaphase
R-HSA-5663220 RHO GTPases Activate Formins
R-HSA-2500257 Resolution of Sister Chromatid Cohesion
R-HSA-2467813 Separation of Sister Chromatids
R-HSA-141424 Amplification of signal from the kinetochores
R-HSA-68886 M Phase
R-HSA-195258 RHO GTPase Effectors
R-HSA-72689 Formation of a pool of free 40S subunits
R-HSA-6791226 Major pathway of rRNA processing in the nucleolus and cytosol
R-HSA-68882 Mitotic Anaphase
R-HSA-69618 Mitotic Spindle Checkpoint
R-HSA-69278 Cell Cycle (Mitotic)
R-HSA-194315 Signaling by Rho GTPases
R-HSA-1799339 SRP-dependent cotranslational protein targeting to membrane
R-HSA-9010553 Regulation of expression of SLITs and ROBOs
R-HSA-72706 GTP hydrolysis and joining of the 60S ribosomal subunit
R-HSA-72695 Formation of the ternary complex, and subsequently, the 43S complex
R-HSA-72649 Translation initiation complex formation
R-HSA-72737 Cap-dependent Translation Initiation
R-HSA-8868773 rRNA processing in the nucleus and cytosol
R-HSA-2555396 Mitotic Metaphase and Anaphase
R-HSA-69620 Cell Cycle Checkpoints
R-HSA-1640170 Cell Cycle
R-HSA-162582 Signal Transduction
R-HSA-156902 Peptide chain elongation
R-HSA-2408557 Selenocysteine synthesis
R-HSA-72764 Eukaryotic Translation Termination
R-HSA-975957 Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)
R-HSA-975956 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)
R-HSA-72766 Translation
R-HSA-376176 Signaling by ROBO receptors
R-HSA-192823 Viral mRNA Translation
R-HSA-72702 Ribosomal scanning and start codon recognition
R-HSA-156827 L13a-mediated translation
R-HSA-72662 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S
R-HSA-72613 Eukaryotic Translation Initiation
R-HSA-72312 rRNA processing
R-HSA-156842 Eukaryotic Translation Elongation
R-HSA-2408522 Selenoamino acid metabolism
R-HSA-927802 Nonsense-Mediated Decay (NMD)
R-HSA-392499 Metabolism of proteins
R-HSA-422475 Axon guidance
R-HSA-168273 Influenza Viral RNA Transcription and Replication
R-HSA-8953854 Metabolism of RNA
R-HSA-71291 Metabolism of nitrogenous molecules
R-HSA-1266738 Developmental Biology
R-HSA-168255 Influenza Life Cycle
R-HSA-1430728 Metabolism
R-HSA-168254 Influenza Infection
R-HSA-5663205 Infectious disease
R-HSA-1643685 Disease

-  Other Names for This Gene
  Alternate Gene Symbols: MPS1, NM_001030, NP_001021, P42677, RS27_HUMAN
UCSC ID: uc001fdv.1
RefSeq Accession: NM_001030
Protein: P42677 (aka RS27_HUMAN)
CCDS: CCDS1059.1

-  GeneReviews for This Gene
  GeneReviews article(s) related to gene RPS27:
diamond-b (Diamond-Blackfan Anemia)

-  Gene Model Information
 
category: coding nonsense-mediated-decay: no RNA accession: NM_001030.3
exon count: 4CDS single in 3' UTR: no RNA size: 372
ORF size: 255CDS single in intron: no Alignment % ID: 100.00
txCdsPredict score: 652.50frame shift in genome: no % Coverage: 95.43
has start codon: yes stop codon in genome: no # of Alignments: 1
has end codon: yes retained intron: no # AT/AC introns 0
selenocysteine: no end bleed into intron: 0# strange splices: 0
Click here for a detailed description of the fields of the table above.

-  Methods, Credits, and Use Restrictions
  Click here for details on how this gene model was made and data restrictions if any.