Gene interactions and pathways from curated databases and text-mining
Braz J Med Biol Res 2009, PMID: 19802467

Stem cell factor protects against neuronal apoptosis by activating AKT/ERK in diabetic mice.

Li, J-W; Li, L-L; Chang, L-L; Wang, Z-Y; Xu, Y

Neuronal apoptosis occurs in the diabetic brain due to insulin deficiency or insulin resistance, both of which reduce the expression of stem cell factor (SCF). We investigated the possible involvement of the activation of the MAPK/ERK and/or AKT pathways in neuroprotection by SCF in diabetes. Male C57/B6 mice (20-25 g) were randomly divided into four groups of 10 animals each. The morphology of the diabetic brain in mice treated or not with insulin or SCF was evaluated by H&E staining and TUNEL. SCF, ERK1/2 and AKT were measured by Western blotting. In diabetic mice treated with insulin or SCF, there was fewer structural change and apoptosis in the cortex compared to untreated mice. The apoptosis rate of the normal group, the diabetic group receiving vehicle, the diabetic group treated with insulin, and the diabetic group treated with SCF was 0.54 +/- 0.077%, 2.83 +/- 0.156%, 1.86 +/- 0.094%, and 1.78 +/- 0.095% (mean +/- SEM), respectively. SCF expression was lower in the diabetic cortex than in the normal cortex; however, insulin increased the expression of SCF in the diabetic cortex. Furthermore, expression of phosphorylated ERK1/2 and AKT was decreased in the diabetic cortex compared to the normal cortex. However, insulin or SCF could activate the phosphorylation of ERK1/2 and AKT in the diabetic cortex. The results suggest that SCF may protect the brain from apoptosis in diabetes and that the mechanism of this protection may, at least in part, involve activation of the ERK1/2 and AKT pathways. These results provide insight into the mechanisms by which SCF and insulin exert their neuroprotective effects in the diabetic brain.

Diseases/Pathways annotated by Medline MESH: Diabetes Mellitus, Experimental
Document information provided by NCBI PubMed

Text Mining Data

SCF ⊣ insulin: " SCF expression was lower in the diabetic cortex than in the normal cortex ; however, insulin increased the expression of SCF in the diabetic cortex "

SCF → insulin: " SCF expression was lower in the diabetic cortex than in the normal cortex ; however, insulin increased the expression of SCF in the diabetic cortex "

ERK1/2 → insulin: " However, insulin or SCF could activate the phosphorylation of ERK1/2 and AKT in the diabetic cortex "

ERK1/2 → SCF: " However, insulin or SCF could activate the phosphorylation of ERK1/2 and AKT in the diabetic cortex "

AKT → insulin: " However, insulin or SCF could activate the phosphorylation of ERK1/2 and AKT in the diabetic cortex "

AKT → SCF: " However, insulin or SCF could activate the phosphorylation of ERK1/2 and AKT in the diabetic cortex "

Manually curated Databases

No curated data.